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Motivation

APS: $467M to build; tens of millions to operate. 2 of 38.
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Optimizing with gradients

minimize
x∈Rn

f (x)

subject to: x ∈ D = {x : −∞ < l ≤ x ≤ u <∞}

I Classical Problem

I Derivatives are traditionally very important in optimization

I How do you find minima/maxima in calculus?
I What information is contained in the gradient?
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Optimizing simulations

minimize
x∈Rn

f (x)

subject to: x ∈ D = {x : −∞ < l ≤ x ≤ u <∞}
∇f (x) is not available

I These types of problems are called “black-box” optimization
problems or derivative-free optimization problems.

I Derivatives are traditionally very important in optimization

I How do you find minima/maxima in calculus?
I What information is contained in the gradient?

I As computers become more powerful, more simulations appear

I Disclaimer: If the problem has derivatives please use them!
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Optimizing simulations
Derivative-free optimization problems show up throughout the world

I Engine design

I Physical experiments

I Tribology

I Satellite planning

9 of 38.



Satellite Collision Avoidance

Courtesy NASA/JPL-Caltech
10 of 38.



Satellite Collision Avoidance

I Problem setup

I Receive a warning from an international monitoring agency

I The probability of collision is 10−1.61 ≈ 0.02.

I Can control the duration and time of your rocket burn

I Only burn in the direction of motion

I You can run a simulation at any duration and time

I Each simulation takes ≈ 20 seconds and we have 2.5 days

I Want a probability of collision under 1 in a billion (10−9)

I Use the least amount of fuel as possible

I What would you do?
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Try it yourself

MATLAB

Process should hopefully be described to a computer.

12 of 38.
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Common first thoughts
I Random Guessing

I Not very elegant

I Evaluate points close to previous points

I Needs some sort of finishing step

I Finite-differences can be problematic

I n + 1 or 2n + 1 evaluations at every point

I Simulations are often noisy

13 of 38.
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Model-based methods - Interpolation
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Model-based methods - Regression
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Other options
I Build a model of the entire space (Kriging)

I Evolutionary algorithms

I Simulated Annealing

I Ant Colony Optimization

I Bee Colony Optimization

I Particle Swarm

I Cuckoo Search

I Bacterial Colony Optimization

I Grey Wolf Optimization

I Firefly Optimization

I Harmony Search

I River Formation Dynamics
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Problem Modifications

The Problem:

minimize
x∈Rn

f (x)

subject to: x ∈ D = {x : −∞ < l ≤ x ≤ u <∞}
∇f (x) is not available
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Problem Modifications

The Problem:

minimize
x∈Rn

f (x)

subject to: x ∈ D = {x : −∞ < l ≤ x ≤ u <∞}
∇f (x) is not available

s(x) ≤ 0 (but s(x) > 0 is less desirable)
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Problem Modifications

The Problem:

minimize
x∈Rn

f (x) = f̃ (x) + ε where ε ∼ N (0, σ2)

subject to: x ∈ D = {x : −∞ < l ≤ x ≤ u <∞}
∇f (x) is not available
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Problem Modifications

The Problem:

minimize
x∈Rn

f (x) =
∑m

i=1 fi (x)2
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Problem Modifications

The Problem:

minimize
x∈Rn

[f1(x), f2(x), . . . , fm(x)]

subject to: x ∈ D = {x : −∞ < l ≤ x ≤ u <∞}
∇fi (x) is not available
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Stochastic

21 of 38.



Problem Formulation

I We want to identify distinct local minimizers of the problem

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I The simulation f is already using parallel resources, but it does not
scale to the entire machine.

I We do not expect hundreds of meaningful local minima.

22 of 38.



Motivation

APS: $467M to build; tens of millions to operate. 23 of 38.



Multi-Level Single Linkage

A multistart method with some local optimization routine L:

Algorithm 1: MLSL

for k = 1, 2, . . . do
Evaluate f at N random points drawn uniformly from D.
Start L at any previously evaluated point x :

I that is not a local minima
I @xi : ‖x − xi‖ ≤ rk and f (xi ) < f (x)

end

24 of 38.



Multi-Level Single Linkage

If the simulation f , and local optimization method L, and rk satisfy
some assumptions, then MLSL has nice theoretical properties.

I f
I Twice continuously differentiable
I All local minima are interior points
I Some positive distance between all minima

I L
I Strictly descent
I Converges to nearby minimum (not stationary point)

I rk

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

σ log kN
kN

(1)
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Multi-Level Single Linkage

Theorem 81

If rk is defined by (1) and σ > 2, then the probability that L is started at
iteration k tends to 0 with increasing k .
If σ > 4, then, even if the sampling continues forever, the total number
of local searches ever started is finite with probability 1.

Theorem 121

If rk → 0, all local minima will be found.

1A. H. G. Rinnooy Kan and G. T. Timmer. “Stochastic Global Optimization Methods Part II:
Multi Level Methods.” Mathematical Programming, 39(1):57–78, Sept. 1987.
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Multi-Level Single Linkage

k = 1; rk = 0.71575;
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Multi-Level Single Linkage

k = 2; rk = 0.60537;
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Multi-Level Single Linkage

k = 3; rk = 0.53603;
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Multi-Level Single Linkage

k = 4; rk = 0.48825;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

27 of 38.



Multi-Level Single Linkage

k = 5; rk = 0.45268;
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Multi-Level Single Linkage

k = 7; rk = 0.40208;
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Multi-Level Single Linkage

k = 18; rk = 0.28209;
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Multi-Level Single Linkage

k = 20; rk = 0.27073;
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Multi-Level Single Linkage

k = 22; rk = 0.26079;
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Multi-Level Single Linkage
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Derivative-free MLSL
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Derivative-free MLSL
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Derivative-free MLSL
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Derivative-free MLSL
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Derivative-free MLSL
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Derivative-free MLSL
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Derivative-free MLSL

k = 11;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

28 of 38.



Derivative-free MLSL
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Derivative-free MLSL
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Derivative-free MLSL
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Derivative-free MLSL

I If we had the ability to concurrently evaluate points, what might be
the best course?

I Is it better to do finite-difference computations or separate local
optimization runs?
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Our Method
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Our Method
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Measuring Performance

ORBIT started from

points in a 10x10 grid

31 of 38.



Measuring Performance

Algorithms compared
I Ours (4 parallel workers)
I Direct (serial)
I pVTDirect (4 parallel workers)

I Since Ours involves a random sampling stream, each problem was
duplicated 10 times.

I Each method evaluates the centroid first.
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Measuring Performance

How would you measure how “efficiently” an algorithm finds multiple
local minima?

33 of 38.



Measuring Performance

Define

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).
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Measuring Performance

Define

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

A method has found the global minimum within a level τ > 0 at batch
iteration k if it has found a point x̂ satisfying:

f (x̂)− f ∗(1) ≤ (1− τ)
(
f (x0)− f ∗(1)

)
,

where x0 is the starting point for the problem.
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Measuring Performance

Define

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

A method has found the j best local minima within a level τ > 0 at
batch iteration k if:∣∣∣{x∗(1), . . . , x

∗
(̄j)

}⋂{
x∗(i)|∃x̂ s.t.

∥∥x̂ − x(i)
∥∥ ≤ τ}∣∣∣ ≥ j

where j̄ is the largest integer such that f ∗
(̄j) = f ∗(j).
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Measuring Performance: τ = 10−1
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Measuring Performance: τ = 10−3
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Measuring Performance: τ = 10−3
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Conclusions and Future Work

Take Away:
I Derivative-free optimization is an active and applicable area of

mathematics
I Local models efficiently use previous function evaluations
I Concurrent function evaluations can be used to help an algorithm

find multiple local optima

Working on:
I Industrial implementation of Our algorithm
I Accelerator design problems
I Developing rules for pausing local optimization runs
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For students:

Computational math includes
I Applications
I Computer Programming
I Theory

DFO is broad
I Geometry of evaluated points
I Analysis
I Stochastic/probabilistic functions
I Stochastic/probabilistic models
I Removing old points?

Questions?
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Other interests

I Sport Scheduling (Elitserien)

I Heavy-duty Vehicle Platooning

I Mathematics Outreach
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